85 research outputs found

    A polymorphism in the human serotonin 5-HT2A receptor gene may protect against systemic sclerosis by reducing platelet aggregation

    Get PDF
    Introduction: Platelet aggregation may contribute to the pathogenesis of systemic sclerosis: following activation, platelets release significant amounts of serotonin - which promotes vasoconstriction and fibrosis, and further enhances aggregation. The C+1354T polymorphism in the exonic region of the serotonin 2A receptor gene determining the His452Tyr substitution was associated with blunted intracellular responses after serotonin stimulation, and may have a role in susceptibility to scleroderma. Methods: One hundred and fifteen consecutive systemic sclerosis patients and 140 well-matched healthy control individuals were genotyped by sequence-specific primer-PCR for the His452Tyr substitution of the serotonin 2A receptor gene, and associations were sought with scleroderma and its main clinical features. The functional relevance of the His452Tyr substitution was also assessed by evaluating the aggregation of platelet-rich plasma from His452/ His452 and His452/Tyr452 healthy individuals after stimulation with adenosine diphosphate ± serotonin. Results: The T allele of the C+1354T polymorphism was underrepresented in scleroderma patients compared with control individuals (5.2% versus 12.4%, P < 0.001, chi-square test and 1,000-fold permutation test) and its carriage reduced the risk for systemic sclerosis (odds ratio = 0.39, 95% confidence interval = 0.19 to 0.85, P < 0.01). Platelets from His452/Tyr452 healthy subjects more weakly responded to serotonin stimulation compared with platelets from His452/His452 individuals (3.2 ± 2.6-fold versus 9.6 ± 8.6-fold increase in aggregation, P = 0.017 by Kolmogorov-Smirnov test and P = 0.003 after correction for baseline adenosine diphosphate-induced aggregation values). Conclusion: The His452Tyr substitution may influence susceptibility to systemic sclerosis by altering platelet aggregation in response to serotonin

    The HLA-B*35 allele modulates ER stress, inflammation and proliferation in PBMCs from Limited Cutaneous Systemic Sclerosis patients

    Get PDF
    Introduction\ud HLA-B*35 is associated with increased risk of developing pulmonary hypertension in SSc patients. We previously reported that HLA-B*35 induces endothelial cell dysfunction via activation of ER stress/UPR and upregulation of the inflammatory response. Because PBMCs from lcSSc-PAH patients are also characterized by activation of ER stress/UPR and inflammation, the goal of this study was to assess whether the presence of HLA-B*35 contributes to those characteristics.\ud \ud Methods\ud PBMCs were purified from healthy controls (n = 49 HC) and lcSSc patients, (n = 44 with PAH, n = 53 without PAH). PBMCs from each group were stratified for the presence of HLA-B*35. Global changes in gene expression in response to HLA-B*35, HLA-B*8 or empty lentivirus were investigated by microarray analysis in HC PBMCs. Total RNA was extracted and qPCR was performed to measure gene expression.\ud \ud Results\ud ER stress markers, in particular the chaperones BiP and DNAJB1 were significantly elevated in PBMC samples carrying the HLA-B*35 allele. IL-6 expression was also significantly increased in HLA-B*35 lcSSc PBMCs and positively correlated with ER stress markers. Likewise, HMGB1 was increased in HLA-B*35-positive lcSSc PBMCs. Global gene expression analysis was used to further probe the role of HLA-B*35. Among genes downregulated by HLA-B*35 lentivirus were genes related to complement (C1QB, C1QC), cell cycle (CDNK1A) and apoptosis (Bax, Gadd45). Interestingly, complement genes (C1QC and C1QB) showed elevated expression in lcSSc without PAH, but were expressed at the low levels in lcSSc-PAH. The presence of HLA-B*35 correlated with the decreased expression of the complement genes. Furthermore, HLA-B*35 correlated with decreased expression of cyclin inhibitors (p21, p57) and pro-apoptotic genes (Bax, Gadd45) in lcSSc B35 subjects. FYN, a tyrosine kinase involved in proliferation of immune cells, was among the genes that were positively regulated by HLA-B*35. HLA-B*35 correlated with increased levels of FYN in lcSSc PBMCs.\ud \ud Conclusions\ud Our study demonstrates that HLA-B*35 contributes to the dysregulated expression of selected ER stress, inflammation and proliferation related genes in lcSSc patient PBMCs, as well as healthy individuals, thus supporting a pathogenic role of HLA-B*35 in the development of PAH in SSc patients

    The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P = 1.34×10&lt;sup&gt;−8&lt;/sup&gt;, OR = 1.22, CI 95% = 1.14–1.30; rs2004640: P = 4.60×10&lt;sup&gt;−7&lt;/sup&gt;, OR = 0.84, CI 95% = 0.78–0.90; rs10488631: P = 7.53×10&lt;sup&gt;−20&lt;/sup&gt;, OR = 1.63, CI 95% = 1.47–1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04×10&lt;sup&gt;−22&lt;/sup&gt;, OR = 1.75, CI 95% = 1.56–1.97) better explained the observed association (likelihood P-value = 1.48×10&lt;sup&gt;−4&lt;/sup&gt;), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific

    Survival dimensionality reduction (SDR): development and clinical application of an innovative approach to detect epistasis in presence of right-censored data

    Get PDF
    Contains fulltext : 89126.pdf (publisher's version ) (Open Access)BACKGROUND: Epistasis is recognized as a fundamental part of the genetic architecture of individuals. Several computational approaches have been developed to model gene-gene interactions in case-control studies, however, none of them is suitable for time-dependent analysis. Herein we introduce the Survival Dimensionality Reduction (SDR) algorithm, a non-parametric method specifically designed to detect epistasis in lifetime datasets. RESULTS: The algorithm requires neither specification about the underlying survival distribution nor about the underlying interaction model and proved satisfactorily powerful to detect a set of causative genes in synthetic epistatic lifetime datasets with a limited number of samples and high degree of right-censorship (up to 70%). The SDR method was then applied to a series of 386 Dutch patients with active rheumatoid arthritis that were treated with anti-TNF biological agents. Among a set of 39 candidate genes, none of which showed a detectable marginal effect on anti-TNF responses, the SDR algorithm did find that the rs1801274 SNP in the Fc gamma RIIa gene and the rs10954213 SNP in the IRF5 gene non-linearly interact to predict clinical remission after anti-TNF biologicals. CONCLUSIONS: Simulation studies and application in a real-world setting support the capability of the SDR algorithm to model epistatic interactions in candidate-genes studies in presence of right-censored data. Availability: http://sourceforge.net/projects/sdrproject/

    Transancestral mapping and genetic load in systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (B50% of these regions have multiple independent associations); these include 24 novel SLE regions (Po5 10 8), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SL

    The Systemic Lupus Erythematosus IRF5 Risk Haplotype Is Associated with Systemic Sclerosis

    Get PDF
    Abstract Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P = 1.34610 28 , OR = 1.22, CI 95% = 1.14-1.30; rs2004640: P = 4.60610 27 , OR = 0.84, CI 95% = 0.78-0.90; rs10488631: P = 7.53610 220 , OR = 1.63, CI 95% = 1.47-1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04610 222 , OR = 1.75, CI 95% = 1.56-1.97) better explained the observed association (likelihood P-value = 1.48610 24 ), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not subphenotype-specific
    corecore